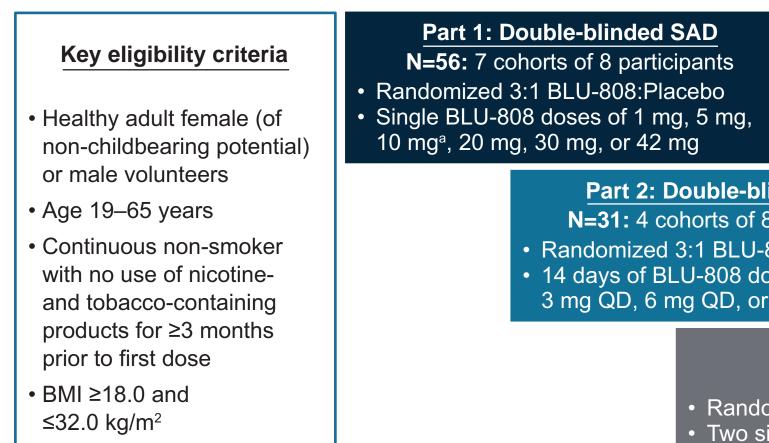

Safety and Pharmacokinetics (PK) of BLU-808 Following Oral Dosing in Healthy Volunteers

Anitha Suram,¹ Ivan T. Lee,¹ Huilan Yao,¹ Alexandra Grassian,¹ Catherine Riccio,¹ Hui Zhang,¹ David Gan,¹ Allen Hunt,² Ronda Rippley,¹ Wendy Ankrom¹

¹Blueprint Medicines Corporation, Cambridge, MA; ²Celerion, Lincoln, NE.

Introduction

- tryptase), cytokines, and chemokines² Activation and/or proliferation of MCs
- through wild-type (WT) KIT signaling is involved in Type 2 inflammation, including inflammatory diseases such as chronic urticaria and asthma^{3–5}
- BLU-808 is an investigational, potent, selective, and orally bioavailable WT KIT inhibitor, with low brain penetration and high selectivity for WT KIT that has shown preclinical activity (see poster #535 at AAAAI 2025)^{6,7}



FcεRI, high-affinity immunoglobulin E receptor; KIT, tyrosine protein kinase; IgE, immunoglobulin E; IL, interleukin; MC, mast cell; PDE, phosphodiesterase; PGD, prostaglandin; SCF, stem cell factor. Image generated using BioRender illustration software.

Methods

- BLU-808-0101 is a first-in-human randomized, double-blind, placebo-controlled study in the USA (Figure 1) - Part 1 evaluated single ascending doses (SAD); BLU-808 was administered orally as either 1 mg or 10 mg
- Part 2 evaluated multiple ascending doses (MAD) for 14 days; BLU-808 was administered orally as 1 mg
- Part 3 evaluated the effects of food on the pharmacokinetics (PK) of BLU-808; BLU-808 was administered orally as 7 x 1 mg tablets, fasted or fed

Figure 1. Study design

Safety evaluations ncidence and severity of TEAEs łematology, chemistry, and urine analysi

Predose and up to 120 hours post-dose (SAD/Food effect)

Part 2: Double-blinded MAD

andomized 3:1 BLU-808:Placebo

mg QD, 6 mg QD, or 12 mg QD

N=31: 4 cohorts of 8 participants^b

4 davs of BLU-808 doses at 1 mg Q

for 14 days under fasting conditions and followed Part 3: Food effect

domized crossover 1:1 Fasted:Fe

up at days 7, 14, and 28 post-treatment

Participants were followed up to 14 days following the second dose of BLU-808 Pharmacodynamic evaluations

Predose, throughout Days 1 to 14 dosing, and up to 14 days after the last dose (MAD)

Duration of treatment and follow-up

under fasting conditions and were followed up t

14 days post-treatment

Part 2: MAD

Participants received multiple doses of BLU-808

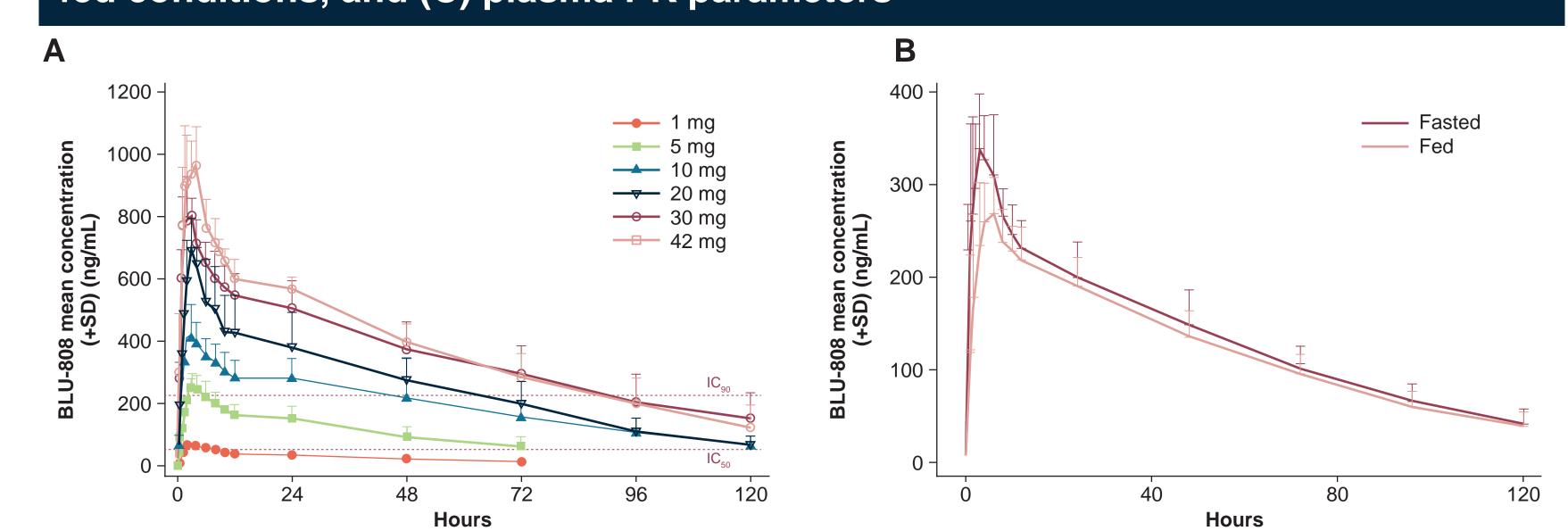
Part 3: Food effect

^aThe 10 mg dose was tested using 2 formulations (10 mg x 1 and 1 mg x 10); PK/pharmacodynamics results from the 1 mg tablet x 10 cohort are presented. ^bMAD 12 mg cohort had only 7 participants (5 BLU-808, 2 placebo). ^cHigh-fat/high-calorie meal. BMI, body-mass index; C_{min}, minimum plasma concentration; ECG, electrocardiogram; MAD, multiple ascending doses; PK, pharmacokinetic; QD, once daily; SAD, single ascending dose; TEAE, treatment-emergent adverse event.

Study demographics

- As of January 11, 2025, 87 participants received either a single dose (N=56) of placebo (n=14) or BLU-808 (n=42), or multiple doses (N=31) of placebo (n=8) or BLU-808 (n=23)
- Baseline serum tryptase levels were balanced across the BLU-808-treated and placebo cohorts

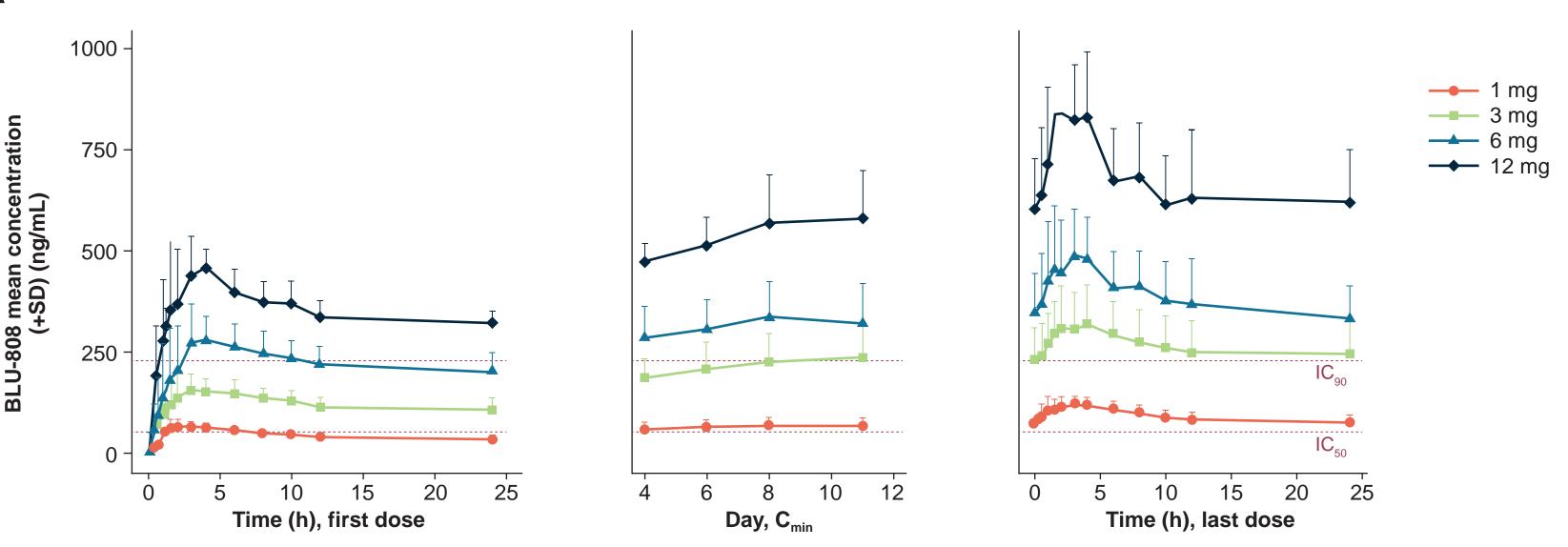
Table 1. Baseline demographics


	SAD (N=56)		MAD (N=31a)			
Characteristic	Placebo (n=14)	BLU-808 (n=42)	Placebo (n=8)	BLU-808 (n=23)	Food effect (N=8)	
Age (years), median (range)	44 (23–63)	47 (21–63)	49 (28–62)	42 (24–60)	46 (26–61)	
Female, n (%)	5 (36)	13 (31)	2 (25)	4 (17)	1 (13)	
Baseline BMI (kg/m²), median (range)	27.3 (20.7–31.3)	27.5 (20.6–31.8)	28.0 (22.2–31.1)	28.4 (21.1–31.1)	28.7 (19.4–31.2)	
Race, n (%)						
White	9 (64)	31 (74)	5 (63)	11 (48)	4 (50)	
Black or African American	5 (36)	6 (14)	2 (25)	10 (44)	3 (38)	
Multiple ^b	0 (0)	4 (10)	1 (13)	1 (4)	1 (13)	
Asian	0 (0)	1 (2)	0 (0)	1 (4)	0 (0)	

study drug, 1 participant (MAD 6 mg cohort) was found to be ineligible at Day 8 due to medical history of benign ethnic neutropenia.

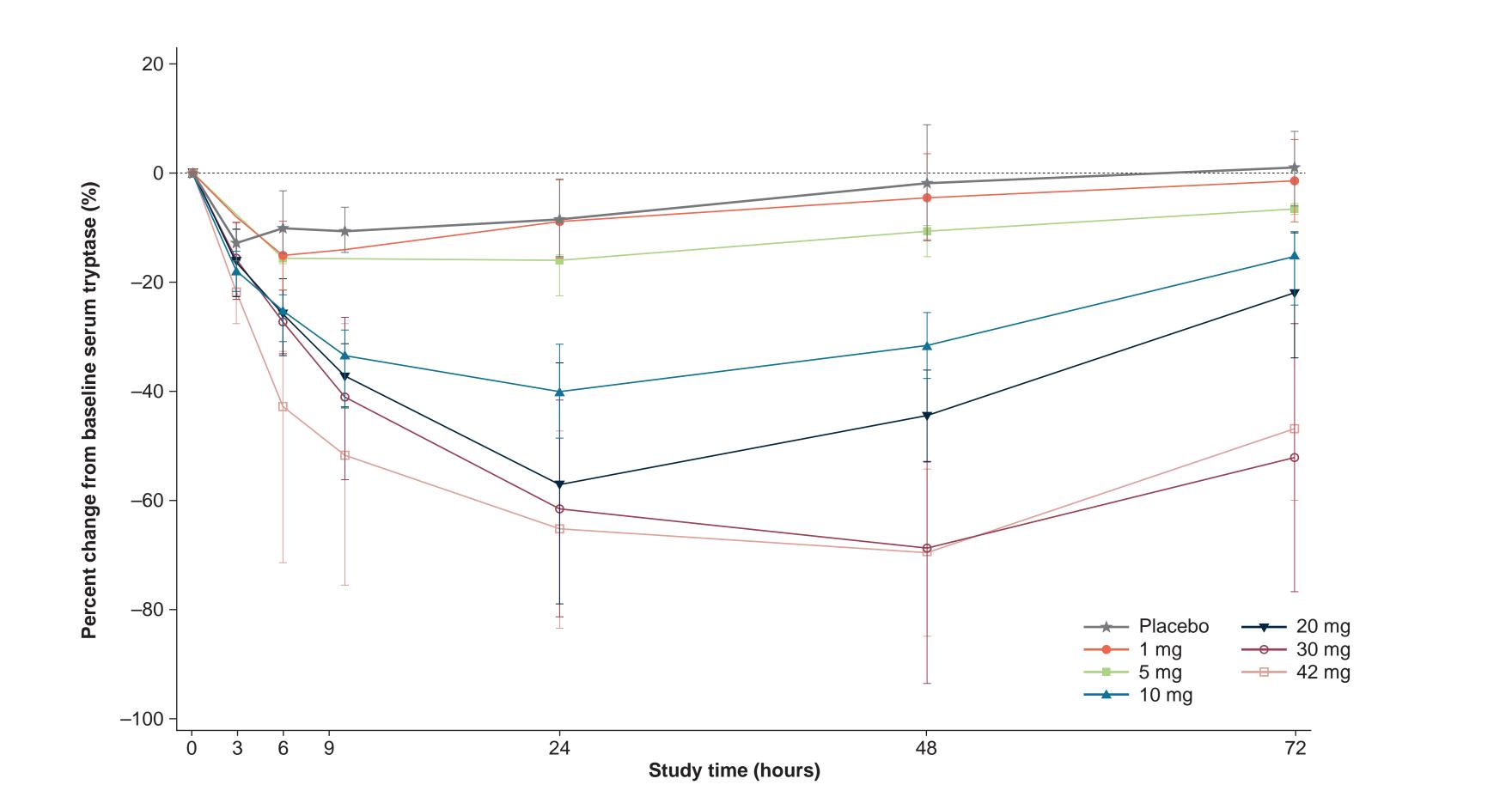
blncludes participants with >1 race selected.

Results


Figure 2. SAD: Mean (+SD) BLU-808 plasma concentrations following (A) BLU-808 administered to healthy adults, fasted (preliminary PK results), (B) fasted *versus* fed conditions, and (C) plasma PK parameters

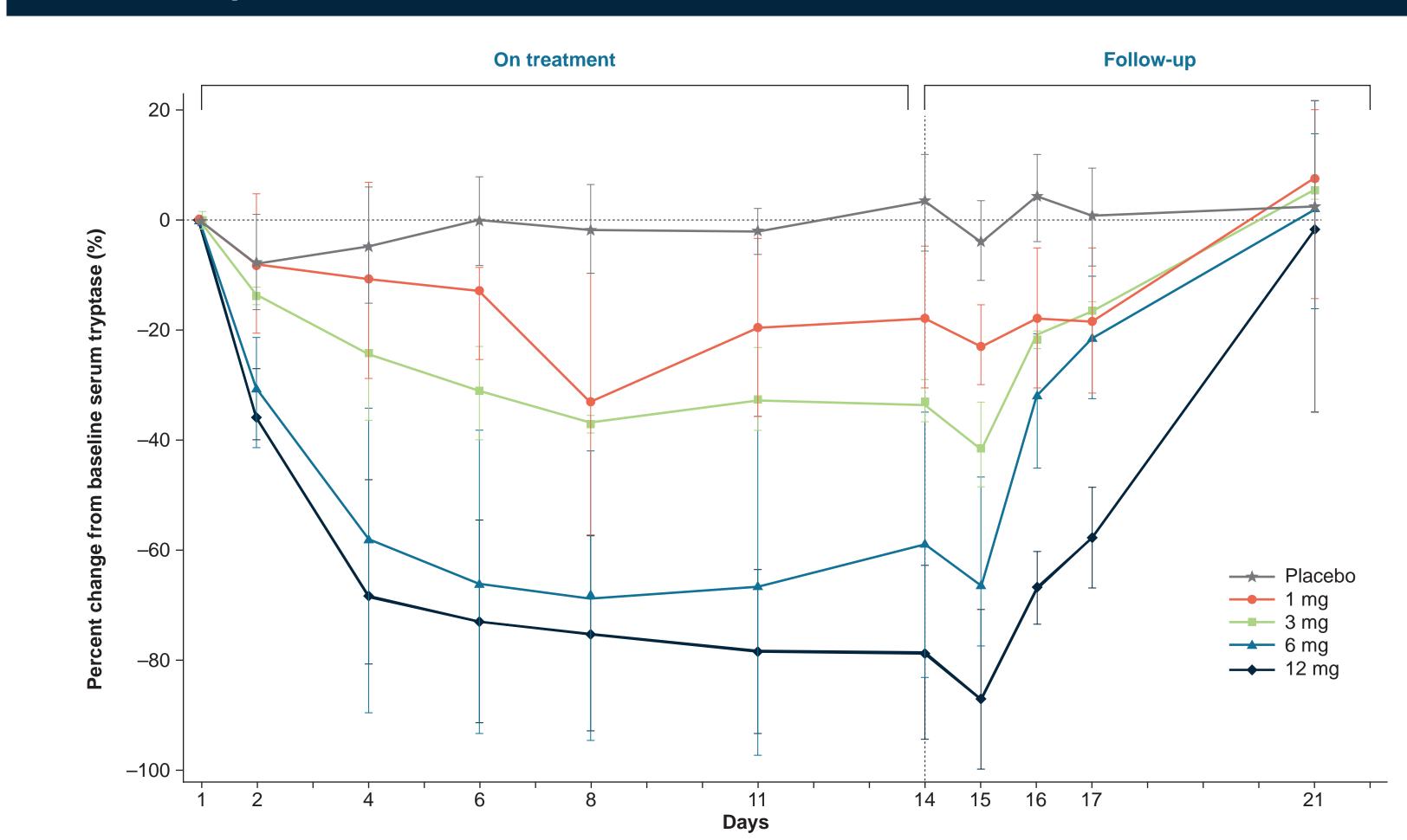
PK parameter	1 mg (n=6)	5 mg (n=6)	10 mg (n=6)	20 mg (n=6)	30 mg (n=6)	42 mg (n=6)	7 mg fasted (n=8)	7 mg fed (n=8)
C _{max} (ng/mL) GM (%CV)	69 (22)	252 (20)	427 (19)	681 (20)	838 (10)	1011 (10)	350 (15)	280 (16)
T _{max} (h) median (range)	3.0 (1–4)	3 (1.5–3)	2.5 (1–3)	3 (2–4)	2.5 (1–6)	3.5 (1–4)	2.5 (1–6)	5 (1.5–8)
AUC _{0-last} (h*ng/mL) GM (%CV)	2257 (21)	8716 (28)	13421 (53)	29031 (28)	41554 (22)	44578 (17)	15828 (20)	14422 (19)
Half-life (h) mean (SD)	39 (11)	37 (14)	44 (26)	30 (4)	53 (25)	42 (18)	41 (8)	38 (8)

- AUC_{0-last} , area under the plasma concentration curve from time 0 to the last measurable non-zero concentration; C_{max} , maximum plasma concentration; GM, geometric mean; h, hour; IC₅₀, half-maximal inhibitory concentration; IC₉₀; 90% of the maximum inhibition; SD, standard deviation; T_{max}, time to maximum concentration; %CV, coefficient of variation
- BLU-808 demonstrated a half-life of ~40 hours, supporting once-daily (QD) dosing (Figure 2C)
- PK was generally dose proportional through 30 mg, with minimal further increase between 30 and 42 mg Low PK variability was observed
- No food effect was observed; geometric mean ratio (GMR) indicated a 9% decrease in area under the plasma concentration curve from time zero to infinity under fed conditions compared to fasted (GMR 0.91; 90%) confidence interval [IC₉₀] 0.83–0.99; **Figure 2B**)


Figure 3. MAD: (A) Mean (+SD) BLU-808 plasma concentrations following oral doses of BLU-808 administered to healthy adults, fasted, for 14 Days (preliminary PK results) and (B) plasma PK parameters

PK parameter	1 mg QD (n=6)	3 mg QD (n=6)	6 mg QD (n=6)	12 mg QD (n=5)
C _{max,ss} (ng/mL) GM (%CV)	122 (17)	316 (31)	491 (23)	878 (25)
T _{max,ss} (h) median (range)	2.5 (1–4)	3.5 (2–4)	3 (1.5–4)	2 (1.5–4)
AUC _{(0-24),ss} (h*ng/mL) GM (%CV)	2133 (21)	6080 (31)	8987 (26)	15733 (21)
C _{min,ss} (ng/mL) GM (%CV)	70 (25)	211 (37)	312 (30)	566 (22)
Day 14 half-life (h) mean (SD)	34 (8)	60 (38)	43 (12)	56 (17)

- \mathcal{L}_{min} , minimum plasma concentration; $C_{\text{min,ss}}$, minimum plasma concentration at steady-state; QD, once daily; T_{max} , time to maximum concentration at
- PK increased approximately dose proportionally from 1 to 12 mg of BLU-808 Steady-state was achieved after ~8 days of QD dosing (Figure 3) and approximately 2-fold accumulation of BLU-808 at steady-state
- Low PK variability was observed

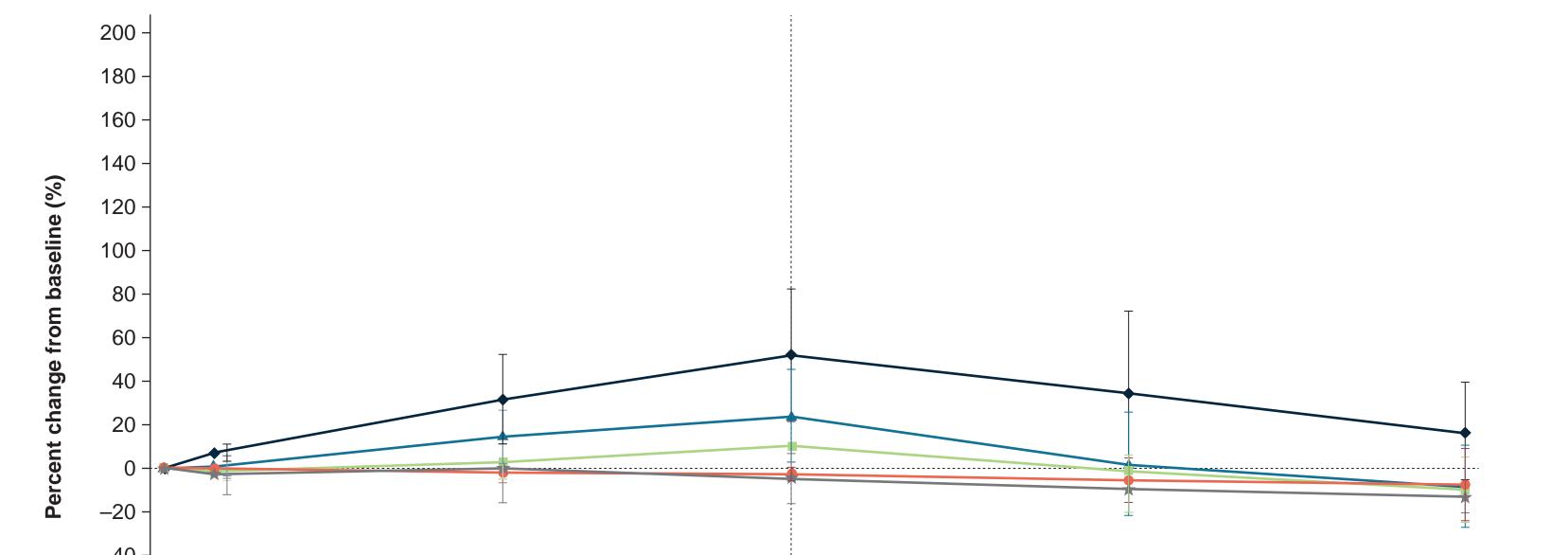

Figure 4. SAD: Mean (±SD) percent change from baseline serum tryptase following BLU-808 or placebo

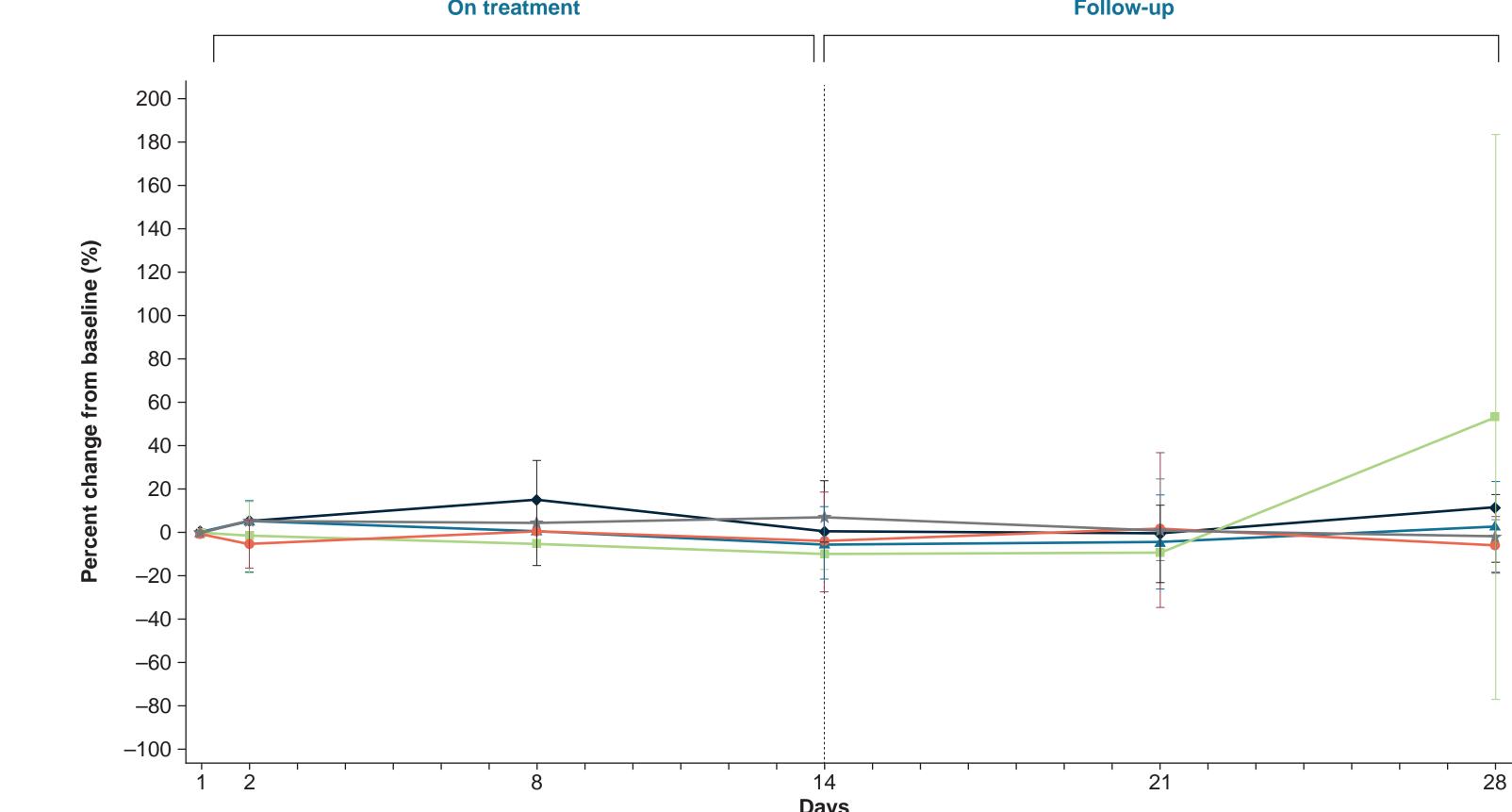
	Change from baseline serum tryptase					
SAD Dose	Maximum (%)	24hr (%)				
Placebo (n=14)	–12	-8				
1 mg (n=6)	–15	- 9				
5 mg (n=6)	– 16	– 16				
10 mg (n=6)	– 40	-4 0				
20 mg (n=6)	– 57	– 57				
30 mg (n=6)	-69	– 61				
42 mg (n=6)	– 70	– 65				
Tryptase values below lower limit of quantification (LLOQ; 1 ng/mL) were imputed at 0 ng/mL.						

 Maximum decreases of >60% were observed at 30 and 42 mg BLU-808 (Figure 4) Similar change in tryptase at the 30 and 42 mg doses reflect similar PK at those doses

Figure 5. MAD: Mean (±SD) percent change from baseline serum tryptase following BLU-808 or placebo

	Change from baselii	Change from baseline serum tryptase				
MAD Dose	Percentage reduction at Day 15 (%)	Participants reaching LLOQ				
Placebo (n=8)	-4	0				
1 mg (n=6)	-23	1/6				
3 mg (n=6)	–41	1/6				
6 mg (n=6)	-66	3/6				
12 mg (n=4) ^a	– 87	3/4				


• Maximum mean tryptase reduction in the 12 mg cohort was 87% (at 24 hours after last dose; Figure 5)


B. Mean (±SD) percentage change from baseline in TNF-α over time with BLU-808 or placebo

undetectable tryptase levels at baseline and was not included in the tryptase analysis.

Figure 6. MAD: Trends in biomarkers (A) SCF and (B) TNF-α over time in BLU-808 treated MAD cohorts, over time with BLU-808 or placebo

A. Mean (±SD) percentage change from baseline in SCF over time with BLU-808 or placebo

—**■** 3 mg → 6 mg → 12 mg

Cytokine analysis assessing a panel of 21 cytokines in MAD cohorts:

SCF, stem cell factor; TNF-α, tumor necrosis factor-o

- Dose-dependent trends were only observed in the KIT ligand, SCF, (Figure 6A) consistent with the high selectivity of BLU-808 for KIT
- No other dose-dependent cytokine trends were observed with 2 weeks of treatment; as a representative example, TNF-α, a classic pro-inflammatory cytokine, that would not be expected to be directly modulated in response to selective KIT inhibition, is shown (Figure 6B)

Safety

- TEAEs observed in ≥2 participants in the SAD cohort: - Placebo arm: headache (n=2), fatigue (n=2), and rhinorrhea (n=2)
- BLU-808-treated arm: headache (n=4); two in the 30 mg cohort, and one each in the 20 mg and 42 mg cohorts
- No serious adverse events (SAEs), all TEAEs were
 Most common TEAEs,^b n Grade 1 except for one Grade 2 headache (30 mg cohort); all AEs resolved
- No clinically significant changes in laboratory measures

- No SAEs were reported in the MAD cohort, and all AEs were Grade 1 except for a Grade 2 constipation (in placebo cohort)
- All AEs resolved
- No treatment discontinuations due to AEs and no
- dose modifications
- No significant changes in electrocardiograms (ECGs), vital signs, or laboratory measures (including aspartate AE, adverse event. transaminase [AST] and alanine transaminase [ALT])
- puncture site pain, 2 of them with lightheadedness
- overall population (N=31). bThree participants in the 12 mg cohort experienced Grade 1 adverse events with blood draw, consisting of vessel

Table 2. MAD: TEAEs by dosing group (reported in ≥2 participant)^a

Table 3. MAD: Mean absolute (A) neutrophils and (B) hemoglobin following BLU-808 or placebo for 14 days

ıtro	phils			B. Hemoglobin				
	Mean	(SD) neutrophils	s, 10 ⁹ /L		Mean (SD) hemoglobin, g/dL			
	Baseline	Day 14	Day 28	Dose	Baseline	Day 14	Day 28	
00	3.3 (0.99)	3.3 (1.18)	3.4 (1.05)	Placebo	15.1 (0.88)	14.6 (0.98)	14.1 (1.13)	
	2.7 (1.31)	2.3 (1.37)	3.3 (1.21)	1 mg	16.1 (1.09)	15.5 (0.74)	15.2 (0.96)	
	3.3 (0.58)	2.5 (0.48)	2.9 (1.15)	3 mg	15.1 (0.61)	14.8 (0.75)	14.0 (0.66)	
	2.5 (1.18)	2.7 (1.34)	2.1 (0.51)	6 mg	15.3 (1.38)	14.7 (1.98)	13.4 (1.31)	

3.4 (0.89) 2.5 (0.61) 2.4 (0.78) **12 mg** 14.6 (0.94) 13.3 (0.93) 12.6 (1.12)

- No TEAEs were reported for any hematologic parameters
- Neutrophil counts were generally stable across all BLU-808 dose levels
- Hemoglobin decreased slightly over time in all dose groups, including placebo, consistent with the effects of phlebotomy; however, there were no significant decreases relative to placebo at any dose level

Conclusions

- BLU-808 had a favorable safety profile up to the maximum dose tested in SAD (42 mg QD) and MAD (12 mg QD) cohorts
 - In the MAD cohort, all TEAEs in participants treated with BLU-808 were Grade 1; no serious TEAEs and no discontinuations or dose modifications due to AEs were reported
 - No significant changes in laboratory assessments, ECGs, or vital signs were reported
- The PK and pharmacodynamics properties of BLU-808 enable tunable dosing to either fully deplete MCs or fully/partially inhibit their activity to maximize benefit-risk
- BLU-808 demonstrated dose-dependent PK, low PK variability, and a long half-life, supporting QD dosing; BLU-808 C_{min} covered *in vitro* WT KIT IC₅₀ at 1 mg QD and reached IC₉₀ at doses of ≥3 mg QD
- Food did not affect the PK of BLU-808
- BLU-808 resulted in dose-dependent decreases in serum tryptase, reaching a maximum decrease of 87% at 12 mg QD
- Dose-dependent SCF changes were observed in BLU-808-treated cohorts
- These results support continued development of BLU-808 for patients with MC-driven allergic diseases

Disclosures

1. Lennartsson J et al. Physiol Rev. 2012;92:1619–16 3. Molderings GJ et al. *Naunyn Schmiedebergs* Arch Pharmacol. 2023;396:2881-2891; 4. Church MK et Immunol Rev. 2018;282:232-247; 5. Elieh-Ali-Komi D et a Allergol Int. 2023;72:359-368; 6. Grassian A et al. Presented at AAAAI 2024. Poster #189; 7. Hatlen M et al. Presented at AAAAI 2025. Poster #535

Dr Suram is an employee and equity holder of Blueprint

Medicines Corporation. Full disclosures for all authors are

available upon request at medinfo@blueprintmedicines.com

data interpretation lies with the authors

This poster was funded by Blueprint Medicines Corporation